Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy.

نویسندگان

  • Jonathan A Byrne
  • David J Grieve
  • Jennifer K Bendall
  • Jian-Mei Li
  • Christopher Gove
  • J David Lambeth
  • Alison C Cave
  • Ajay M Shah
چکیده

Increased production of reactive oxygen species (ROS) is implicated in the development of left ventricular hypertrophy (LVH). Phagocyte-type NADPH oxidases are major cardiovascular sources of ROS, and recent data indicate a pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II (Ang II)-induced LVH. We investigated the role of this oxidase in pressure-overload LVH. gp91phox-/- mice and matched controls underwent chronic Ang II infusion or aortic constriction. Ang II-induced increases in NADPH oxidase activity, atrial natriuretic factor (ANF) expression, and cardiac mass were inhibited in gp91phox-/- mice, whereas aortic constriction-induced increases in cardiac mass and ANF expression were not inhibited. However, aortic constriction increased cardiac NADPH oxidase activity in both gp91phox-/- and wild-type mice. Myocardial expression of an alternative gp91phox isoform, Nox4, was upregulated after aortic constriction in gp91phox-/- mice. The antioxidant, N-acetyl-cysteine, inhibited pressure-overload-induced LVH in both gp91phox-/- and wild-type mice. These data suggest a differential response of the cardiac Nox isoforms, gp91phox and Nox4, to Ang II versus pressure overload.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pivotal Role of a gp91-Containing NADPH Oxidase in Angiotensin II–Induced Cardiac Hypertrophy in Mice

Background—Angiotensin II induces both cardiac and vascular smooth muscle (VSM) hypertrophy. Recent studies suggest a central role for a phagocyte-type NADPH oxidase in angiotensin II–induced VSM hypertrophy. The possible involvement of an NADPH oxidase in the development of cardiac hypertrophy has not been studied. Methods and Results—Mice with targeted disruption of the NADPH oxidase subunit ...

متن کامل

Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice.

BACKGROUND Angiotensin II induces both cardiac and vascular smooth muscle (VSM) hypertrophy. Recent studies suggest a central role for a phagocyte-type NADPH oxidase in angiotensin II-induced VSM hypertrophy. The possible involvement of an NADPH oxidase in the development of cardiac hypertrophy has not been studied. Methods and Results- Mice with targeted disruption of the NADPH oxidase subunit...

متن کامل

Resveratrol Suppresses Cardiac Renin Angiotensin System in the Late Phase of Left Ventricular Hypertrophy

Background and objectives: Resveratrol(3,5,4′-trihydroxy-trans-stilbene) is a natural polyphenole phytoalexin which exerts potential cardioprotective effects, but the cellular and molecular mechanisms responsible for these effects are still unknown. Cardiac renin angiotensin system (RAS) over-activation plays an important role in pathogenesis of left ventricula...

متن کامل

Cardioprotective effects mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin 1-7 in experimental heart failure in angiotensin-converting enzyme 2-null mice.

Loss of angiotensin (Ang)-converting enzyme 2 (ACE2) and inability to metabolize Ang II to Ang 1-7 perpetuate the actions of Ang II after biomechanical stress and exacerbate early adverse myocardial remodeling. Ang receptor blockers are known to antagonize the effect of Ang II by blocking Ang II type 1 receptor (AT(1)R) and also by upregulating the ACE2 expression. We directly compare the benef...

متن کامل

Pressure Overload–Induced Myocardial Hypertrophy in Mice Does Not Require gp91

Background—Reactive oxygen species (ROS) may mediate pressure overload–induced myocardial hypertrophy. NADPH oxidase may be involved in this process, because its expression and activity are upregulated by pressure overload and because myocardial hypertrophy caused by a subpressor infusion of angiotensin is attenuated in mice deficient in the gp91 catalytic subunit of NADPH oxidase. Methods and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 93 9  شماره 

صفحات  -

تاریخ انتشار 2003